MSc Y Shen

PhD student
Electronic Circuits and Architectures (ELCA), Department of Microelectronics


Promotor: Leo de Vreede, Morteza Alavi

Smart Energy Efficient Digital Communication

SEEDCOM aims for fully integrated energy efficient wideband transmitters

  1. A Wideband Digital-Intensive Current-Mode Transmitter Line-Up
    Y. Shen; M. Hoogelander; R. Bootsman; M. S. Alavi; L. C. N. de Vreede;
    IEEE Journal Solid-State Circuits,
    Volume 58, Issue 9, pp. 2489-2500, Sep. 2023. DOI: 10.1109/JSSC.2023.3279235

  2. A Wideband Energy-Efficient Multi-Mode CMOS Digital Transmitter
    Beikmirza, Mohammadreza; Shen, Yiyu; de Vreede, Leo C. N.; Alavi, Morteza S.;
    IEEE Journal of Solid-State Circuits,
    Volume 58, Issue 3, pp. 677-690, 2023. DOI: 10.1109/JSSC.2022.3222028

  3. A Wideband Digital-Intensive Current-Mode Transmitter Line-Up
    Shen, Yiyu; Hoogelander, Martijn; Bootsman, Rob; Alavi, Morteza S.; de Vreede, Leo C. N.;
    IEEE Journal of Solid-State Circuits,
    pp. 1-12, 2023. DOI: 10.1109/JSSC.2023.3279235

  4. A Four-Way Series Doherty Digital Polar Transmitter at mm-Wave Frequencies
    Mortazavi, Mohsen; Shen, Yiyu; Mul, Dieuwert; de Vreede, Leo C. N.; Spirito, Marco; Babaie, Masoud;
    IEEE Journal of Solid-State Circuits,
    Volume 57, Issue 3, pp. 803-817, 2022. DOI: 10.1109/JSSC.2021.3133861

  5. A 23.8–30.4-GHz Vector-Modulated Phase Shifter With Two-Stage Current-Reused Variable-Gain Amplifiers Achieving 0.23° Minimum RMS Phase Error
    Zhang, Linghan; Shen, Yiyu; de Vreede, Leo; Babaie, Masoud;
    IEEE Solid-State Circuits Letters,
    Volume 5, pp. 150-153, 2022. DOI: 10.1109/LSSC.2022.3179661

  6. High-Power Digital Transmitters for Wireless Infrastructure Applications (A Feasibility Study)
    Bootsman, Robert J.; Mul, Dieuwert P. N.; Shen, Yiyu; Hashemi, Mohsen; Heeres, Rob M.; van Rijs, Fred; Alavi, Morteza S.; de Vreede, Leo C. N.;
    IEEE Transactions on Microwave Theory and Techniques,
    Volume 70, Issue 5, pp. 2835-2850, 2022. DOI: 10.1109/TMTT.2022.3153000

  7. A Wideband IQ-Mapping Direct-Digital RF Modulator for 5G Transmitters
    Shen, Yiyu; Bootsman, Robert; Alavi, Morteza S.; de Vreede, Leo C. N.;
    IEEE Journal of Solid-State Circuits,
    Volume 57, Issue 5, pp. 1446-1456, 2022. DOI: 10.1109/JSSC.2022.3144362

  8. A Low-Spur Fractional-N PLL Based on a Time-Mode Arithmetic Unit
    Gao, Zhong; He, Jingchu; Fritz, Martin; Gong, Jiang; Shen, Yiyu; Zong, Zhirui; Chen, Peng; Spalink, Gerd; Eitel, Ben; Alavi, Morteza S.; Staszewski, Robert Bogdan; Babaie, Masoud;
    IEEE Journal of Solid-State Circuits,
    pp. 1-20, 2022. DOI: 10.1109/JSSC.2022.3209338

  9. A 39 W Fully Digital Wideband Inverted Doherty Transmitter
    Bootsman, Robert; Shen, Yiyu; Mul, Dieuwert; Rousstia, Mohadig; Heeres, Rob; van Rijs, Fred; Gajadharsing, John; Alavi, Morteza S.; de Vreede, Leo C.N.;
    In 2022 IEEE/MTT-S International Microwave Symposium - IMS 2022,
    pp. 979-982, 2022. DOI: 10.1109/IMS37962.2022.9865405

  10. A Wideband Two-Way Digital Doherty Transmitter in 40nm CMOS
    Beikmirza, Mohammadreza; Shen, Yiyu; de Vreede, Leo C.N.; Alavi, Morteza S.;
    In 2022 IEEE/MTT-S International Microwave Symposium - IMS 2022,
    pp. 975-978, 2022. DOI: 10.1109/IMS37962.2022.9865506

  11. A 1-to-4GHz Multi-Mode Digital Transmitter in 40nm CMOS Supporting 200MHz 1024-QAM OFDM signals with more than 23dBm/66% Peak Power/Drain Efficiency
    Beikmirza, Mohammadreza; Shen, Yiyu; de Vreede, Leo C.N.; Alavi, Morteza S.;
    In 2022 IEEE Custom Integrated Circuits Conference (CICC),
    pp. 01-02, 2022. DOI: 10.1109/CICC53496.2022.9772797

  12. A 1.66Gb/s and 5.8pJ/b Transcutaneous IR-UWB Telemetry System with Hybrid Impulse Modulation for Intracortical Brain-Computer Interfaces
    Song, Minyoung; Huang, Yu; Shen, Yiyu; Shi, Chengyao; Breeschoten, Arjan; Konijnenburg, Mario; Visser, Huib; Romme, Jac; Dutta, Barundeb; Alavi, Morteza S.; Bachmann, Christian; Liu, Yao-Hong;
    In 2022 IEEE International Solid- State Circuits Conference (ISSCC),
    pp. 394-396, 2022. DOI: 10.1109/ISSCC42614.2022.9731608

  13. A 2.6-to-4.1GHz Fractional-N Digital PLL Based on a Time-Mode Arithmetic Unit Achieving -249.4dB FoM and -59dBc Fractional Spurs
    Gao, Zhong; He, Jingchu; Fritz, Martin; Gong, Jiang; Shen, Yiyu; Zong, Zhirui; Chen, Peng; Spalink, Gerd; Eitel, Ben; Yamamoto, Ken; Staszewski, Robert Bogdan; Alavi, Morteza S.; Babaie, Masoud;
    In 2022 IEEE International Solid- State Circuits Conference (ISSCC),
    pp. 380-382, 2022. DOI: 10.1109/ISSCC42614.2022.9731561

  14. A Wideband Four-Way Doherty Bits-In RF-Out CMOS Transmitter
    Beikmirza, Mohammadreza; Shen, Yiyu; de Vreede, Leo C. N.; Alavi, Morteza S.;
    IEEE Journal of Solid-State Circuits,
    Volume 56, Issue 12, pp. 3768-3783, 2021. DOI: 10.1109/JSSC.2021.3105542

  15. 6.2 A 4-Way Doherty Digital Transmitter Featuring 50%-LO Signed IQ Interleave Upconversion with more than 27dBm Peak Power and 40% Drain Efficiency at 10dB Power Back-Off Operating in the 5GHz Band
    Beikmirza, Mohammadreza; Shen, Yiyu; Mehrpoo, Mohammadreza; Hashemi, Mohsen; Mul, Dieuwert; de Vreede, Leo C.N.; Alavi, Morteza S.;
    In 2021 IEEE International Solid- State Circuits Conference (ISSCC),
    pp. 92-94, 2021. DOI: 10.1109/ISSCC42613.2021.9365831

  16. Efficiency and Linearity of Digital "Class-C Like" Transmitters
    Mul, Dieuwert P.N.; Bootsman, Rob J.; Bruinsma, Quinten; Shen, Yiyu; Krause, Sebastian; Quay, Rüdiger; Pelk, Marco J.; van Rijs, Fred; Heeres, Rob M.; Pires, Sergio; Alavi, Morteza; de Vreede, Leo C.N.;
    In 2020 50th European Microwave Conference (EuMC),
    pp. 1-4, 2021. DOI: 10.23919/EuMC48046.2021.9338122

  17. A 30GHz 4-way Series Doherty Digital Polar Transmitter Achieving 18% Drain Efficiency and -27.6dB EVM while Transmitting 300MHz 64-QAM OFDM Signal
    Mortazavi, Mohsen; Shen, Yiyu; Mul, Dieuwert. P. N.; de Vreede, Leo C. N.; Spirito, Marco; Babaie, Masoud;
    In 2021 IEEE Custom Integrated Circuits Conference (CICC),
    pp. 1-2, 2021. DOI: 10.1109/CICC51472.2021.9431396

  18. An 18.5 W Fully-Digital Transmitter with 60.4 % Peak System Efficiency
    Bootsman, R.J.; Mul, D.P.N.; Shen, Y.; Heeres, R.M.; van Rijs, F.; Alavi, M.S.; de Vreede, L.C.N.;
    In 2020 IEEE/MTT-S International Microwave Symposium (IMS),
    pp. 1113-1116, 2020. DOI: 10.1109/IMS30576.2020.9223942

  19. A 1–3 GHz I/Q Interleaved Direct-Digital RF Modulator As A Driver for A Common-Gate PA in 40 nm CMOS
    Shen, Yiyu; Bootsman, Rob; Alavi, Morteza S.; de Vreede, Leo C.N.;
    In 2020 IEEE Radio Frequency Integrated Circuits Symposium (RFIC),
    pp. 287-290, 2020. DOI: 10.1109/RFIC49505.2020.9218324

  20. A 0.5-3 GHz I/Q Interleaved Direct-Digital RF Modulator with up to 320 MHz Modulation Bandwidth in 40 nm CMOS
    Shen, Yiyu; Bootsman, Rob; Alavi, Morteza S.; de Vreede, Leonardus;
    In 2020 IEEE Custom Integrated Circuits Conference (CICC),
    pp. 1-4, 2020. DOI: 10.1109/CICC48029.2020.9075949

  21. Online Graph-Adaptive Learning With Scalability and Privacy
    Yanning Shen; G. Leus; G.B. Giannakis;
    IEEE Tr. Signal Processing,
    Volume 67, Issue 9, pp. 2471-2483, May 2019. DOI: 10.1109/TSP.2019.2904922
    document

  22. A Highly Linear Wideband Polar Class-E CMOS Digital Doherty Power Amplifier
    Hashemi, Mohsen; Zhou, Lei; Shen, Yiyu; de Vreede, Leo C. N.;
    IEEE Transactions on Microwave Theory and Techniques,
    Volume 67, Issue 10, pp. 4232-4245, 2019. DOI: 10.1109/TMTT.2019.2933204

  23. Scalable Learning with Privacy over Graphs
    Yanning Shen; Geert Leus;
    In 2019 IEEE Data Science Workshop (DSW),
    IEEE, pp. 83--87, 2019. ISBN: 978-1-7281-0709-7. DOI: 10.1109/DSW.2019.8755782
    Abstract: ... Graphs have well-documented merits for modeling complex systems, including financial, biological, and social networks. Network nodes can also include attributes such as age or gender of users in a social network. However, the size of real-world networks can be massive, and nodal attributes can be unavailable. Moreover, new nodes may emerge over time, and their attributes must be inferred in real time. In this context, the present paper deals with scalable learning of nodal attributes by estimating a nodal function based on noisy observations at a subset of nodes. A multikernel-based approach is developed which is scalable to large-size networks. The novel method is capable of providing real-time evaluation of the function values on newly-joining nodes without resorting to a batch solver. In addition, the novel scheme only relies on an encrypted version of each node's connectivity, which promotes privacy. Experiments on real datasets corroborate the effectiveness of the proposed methods.

    document

  24. A Wideband Linear $I/Q$ -Interleaving DDRM
    Mehrpoo, Mohammadreza; Hashemi, Mohsen; Shen, Yiyu; de Vreede, Leo C. N.; Alavi, Morteza S.;
    IEEE Journal of Solid-State Circuits,
    Volume 53, Issue 5, pp. 1361-1373, 2018. DOI: 10.1109/JSSC.2017.2786685

  25. A Wideband I/Q RFDAC-Based Phase Modulator
    Yiyu Shen; Michael Polushkin; Mohammad Reza Mehrpoo; Mohsen Hashemi; Earl McCune; Morteza S. Alavi; Leo C. N. de Vreede,;
    In (accepted RWS 2018).,
    2018.

  26. A wideband I/Q RFD AC-based phase modulator
    Shen, Yiyu; Polushkin, Michael; Mehrpoo, Mohammadreza; Hashemi, Mohsen; McCune, Earl; Alavi, Morteza S.; de Vreede, Leo C. N.;
    In 2018 IEEE 18th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF),
    pp. 8-11, 2018. DOI: 10.1109/SIRF.2018.8304215

  27. An Intrinsically Linear Wideband Polar Digital Power Amplifier
    Hashemi, Mohsen; Shen, Yiyu; Mehrpoo, Mohammadreza; Alavi, Morteza S.; de Vreede, Leo C. N.;
    IEEE Journal of Solid-State Circuits,
    Volume 52, Issue 12, pp. 3312-3328, 2017. DOI: 10.1109/JSSC.2017.2737647

  28. An intrinsically linear wideband digital polar PA featuring AM-AM and AM-PM corrections through nonlinear sizing, overdrive-voltage control, and multiphase RF clocking
    M. Hashemi; Y. Shen; M. Mehrpoo; M. Acar; R. van Leuken; M. S. Alavi; L. de Vreede;
    In 2017 IEEE International Solid-State Circuits Conference (ISSCC),
    pp. 300-301, February 2017. DOI: 10.1109/ISSCC.2017.7870380
    document

  29. A fully-integrated digital-intensive polar Doherty transmitter
    Y. Shen; M. Mehrpoo; M. Hashemi; M. Polushkin; L. Zhou; M. Acar; R. van Leuken; M. S. Alavi; L. de Vreede;
    In 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC),
    pp. 196-199, June 2017. DOI: 10.1109/RFIC.2017.7969051
    document

  30. A wideband linear direct digital RF modulator using harmonic rejection and I/Q-interleaving RF DACs
    M. Mehrpoo; M. Hashemi; Y. Shen; R. van Leuken; M. S. Alavi; L. C. N. de Vreede;
    In 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC),
    pp. 188-191, June 2017. DOI: 10.1109/RFIC.2017.7969049
    document

  31. 17.5 An intrinsically linear wideband digital polar PA featuring AM-AM and AM-PM corrections through nonlinear sizing, overdrive-voltage control, and multiphase RF clocking
    Hashemi, Mohsen; Shen, Yiyu; Mehrpoo, Mohammadreza; Acar, Mustafa; van Leuken, René; Alavi, Morteza S.; de Vreede, Leonardus;
    In 2017 IEEE International Solid-State Circuits Conference (ISSCC),
    pp. 300-301, 2017. DOI: 10.1109/ISSCC.2017.7870380

  32. A wideband linear direct digital RF modulator using harmonic rejection and I/Q-interleaving RF DACs
    Mehrpoo, M.; Hashemi, M.; Shen, Y.; van Leuken, R.; Alavi, M. S.; de Vreede, L. C. N.;
    In 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC),
    pp. 188-191, 2017. DOI: 10.1109/RFIC.2017.7969049

  33. Highly efficient and linear class-E CMOS digital power amplifier using a compensated Marchand balun and circuit-level linearization achieving 67% peak DE and −40dBc ACLR without DPD
    Hashemi, Mohsen; Zhou, Lei; Shen, Yiyu; Mehrpoo, Mohammadreza; de Vreede, Leo;
    In 2017 IEEE MTT-S International Microwave Symposium (IMS),
    pp. 2025-2028, 2017. DOI: 10.1109/MWSYM.2017.8059066

  34. A fully-integrated digital-intensive polar Doherty transmitter
    Shen, Yiyu; Mehrpoo, Mohammadreza; Hashemi, Mohsen; Polushkin, Michael; Zhou, Lei; Acar, Mustafa; van Leuken, Rene; Alavi, Morteza S.; de Vreede, Leo;
    In 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC),
    pp. 196-199, 2017. DOI: 10.1109/RFIC.2017.7969051

  35. First-principles study of the effect of functional groups on polyaniline backbone
    X P Chen; J K Jiang; Q H Liang; N Yang; Huaiyu Ye; M Cai; L Shen; D G Yang; T L Ren;
    Scientific Reports,
    Volume 5, pp. 16907, 2015.

  36. Tunable binary fresnel lens based on stretchable PDMS/CNT compsite
    Xueming Li; L. Wei; S. Vollebregt; R. Poelma; Y. Shen; Jia Wei; P. Urbach; P.M. Sarro; GuoQi Zhang;
    In Transducers,
    pp. 2041-2044, 2015.

  37. A buried vertical filter for micro and nanoparticle filtration
    S.J. Li; C. Shen; P.M. Sarro;
    Sensors and Actuators A,
    Volume 186, pp. 203-209., Oct. 2012. DOI 10.1016/j.sna.2012.04.027.

  38. Micromachined nanofiltration modules for lab-on-a-chip applications
    C. Shen; V.R.S.S. Mokkapati; H.T.M. Pham; P.M. Sarro;
    Journal of Micromechanics and Microengineering,
    Volume 22, Issue 2, pp. 1-10., Jan. 2012. DOI 10.1088/0960-1317/22/2/025003.

  39. Studies on localized corrosion in aluminium alloys using in situ transmission electron microscopy
    S.R.K. Malladi; Q. C. Xu Shen; G. Pandraud; F.D. Tichelaar; H.W. Zandbergen;
    In The 15th European Microscopy Congress (EMC 2012),
    Manchester, UK, pp. 1-2, Sept. 2012.

  40. DNA tracking within a nanochannel: device fabrication and experiments
    V.R.S.S. Mokkapati; V. di Virgilio; C. Shen; J. Mollinger; J. Bastemeijer; A. Bossche;
    Lab on a Chip,
    Volume 11, Issue 16, pp. 2711-2719, 2011.

  41. Low temperature encapsulation of nanochannels with water inside
    C. Shen; V.R.S.S. Mokkapati; F. Santagata; A. Bossche; P.M. Sarro;
    In 16th International Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS 2011),
    Beijing, China, pp. 854-857, Jun. 2011. ISBN 978-1-4577-0157-3; DOI 10.1109/TRANSDUCERS.2011.5969464.

  42. IC compatible top down process for silicon nanowire FET arrays with three 100 surfaces for (BIO) chemical sensing
    T.S.Y. Moh; Y. Maruyama; C. Shen; G. Pandraud; L.C.P.M. de Smet; H.D. Tong; C. van Rijn; E.J.R. Sudholter; P.M. Sarro;
    In 16th International Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS 2011),
    Beijing, China, pp. 1590-1593, Jun. 2011. ISBN 978-1-4577-0157-3; DOI 10.1109/TRANSDUCERS.2011.5969796.

  43. A buried vertical filter for micro and nanoparticle filtration
    S.J. Li; C. Shen; P.M. Sarro;
    In C. Tsamis; G. Kaltas (Ed.), Proc. Eurosensors XXV,
    Athens, Greece, Procedia Engineering, pp. 1193-1196, Sep. 2011. DOI 10.1016/j.proeng.2011.12.294.

  44. Low temperature encapsulation of nanochannels with water inside
    C. Shen; VRSS. Mokkapati; F. Santagata; A. Bossche; P.M. Sarro;
    In {Fan et al}, L-S (Ed.), 16th International Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS 2011),
    IEEE, pp. 854-857, 2011.

  45. Low temperature encapsulation of nanochannels with water inside
    C. Shen; V.R.S.S Mokkapati; F. Santagata; A. Bossche; P.M. Sarro;
    In 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference,
    IEEE, pp. 854-857, 2011.

  46. Silicon micromachined vertical structures for nanoparticle separation
    C. Shen;
    PhD thesis, Delft University of Technology, Nov. 2011. ISBN 978-90-8570-761-5; Promotor: prof.dr. P.M. Sarro.

  47. Characterization of AlN thin films sputtered on Al/Ti electrodes for piezoelectric devices
    A.T. Tran; H. Schellevis; C. Shen; H.T.M. Pham; P.M. Sarro;
    In Proc. of SAFE 2009,
    Veldhoven, The Netherlands, STW, pp. 121-124, 2009.
    document

  48. A Multifunctional Vertical Microsieve for Micro and Nano Particles Separation
    C. Shen; T.M.H. Pham; P.M. Sarro;
    In Micro Electro Mechanical Systems,
    Sorrento, Italy, pp. 383-386, 2009.

  49. Alignment insensitive anisotropic etching of silicon cavities with smooth 49� sidewalls
    C. Shen; H.T.M. Pham; P.M. Sarro;
    In he 15th International Conference on Solid-State Sensors, Actuators and Microsystems, Transducers 2009,
    pp. 1071-1074, 2009.
    document

  50. A parallel system for photo realistic artificial scene rendering
    E.F. Deprettere; G.J. Hekstra; L.S. Shen; J. Bu; G. Boersma;
    In 1996 IEEE Workshop on VLSI Signal Processing,
    IEEE, pp. 425-438, October 1994.

  51. A Parallel Image Rendering Algorithm and Architecture based on Ray Tracing and Radiosity Shading
    Li-Sheng Shen;
    PhD thesis, Delft University of Technology, September 1993. ISBN 90-5326-012-9/CIP.

  52. A New Space Partitioning for Mapping Computations of the Radiosity Method onto a Highly Pipelined Parallel Architecture
    L.S. Shen; E.F. Deprettere; P. Dewilde;
    In Advances in Computer Graphics Hardware V,
    Berlin, Springer-Verlag, 1992.

  53. A Parallel-Pipelined Multiprocessor System for the Radiosity Method
    L.S. Shen; E.F. Deprettere;
    In Proceedings Seventh Eurographics Workshop on Graphics Hardware,
    September 1992.

  54. A Hierarchical Memory Structure for the 3D Shelling Technique
    L.S. Shen; E.F. Deprettere;
    In Proceedings IEEE International Conference on Computer Systems and Software Engineering,
    pp. 244-249, May 1992.

  55. A New Space Partitioning Technique to Support a Pipelined Parallel Architecture for the Radiosity Method
    L.S. Shen; E.F. Deprettere;
    In Algorithms and Parallel VLSI Architectures,
    Amsterdam, North Holland, 1991.

  56. A New Space Partitioning for Mapping Computations of the Radiosity Method onto a Highly Pipelined Parallel Architectures: Part II
    L.S. Shen; F. Laarakker; E.F. Deprettere;
    In Proceedings Sixth Eurographics Workshop on Graphics Hardware,
    September 1991.

  57. A New Space Partitioning for Mapping Computations of the Radiosity Method onto a Highly Pipelined Parallel Architectures
    L.S. Shen; E.F. Deprettere; P. Dewilde;
    In Proceedings ProRISC/IEEE Symposium,
    1991.

  58. A New Space Partitioning Technique to Support a Highly Pipelined Parallel Architecture for the Radiosity Method
    L.S. Shen; E.F. Deprettere;
    In Proceedings Fifth Eurographics Workshop on Graphics Hardware,
    September 1991.

BibTeX support

Last updated: 7 Dec 2021

Yiyu Shen

Alumnus
  • Left in 2021